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Abstract

An approximate solution is presented to the phase equilibrium problem for the case of a partially miscible polymer solution or a binary
heteropolymer blend. It is based on the Flory—Huggins theory and is valid for mixtures well into the phase-separated region. Analytical
expressions are derived for the extent and composition of each of the two coexisting phases as a function of the component molecular size and
interaction strength. These results are combined with Helfand’s model to provide estimates for the interfacial tension and thickness and,
therefore, a measure of the quality of the interfacial bonding in a polymer/polymer blend. They are also utilized in conjunction with a free
volume theory approach for calculating the mutual diffusion coefficient of a penetrant, migrating through a polymer. © 2001 Published by

Elsevier Science Ltd.
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1. Introduction

In both industry and nature, almost invariably, polymers
are deliberately or accidentally mixed at various degrees
with a multitude of solid and liquid substances. Among
the latter ones, one may include plasticizers, processing
aids, lubricants, antioxidants, contaminants, post-poly-
merization residues, fat and greases, other polymers,
compatibilizers, humidity or other solvents existing in the
environment. Irrespective of whether solvent adsorption is
deliberate or accidental, or of whether its presence benefits
(e.g. antidegrading action) or causes damage (e.g. environ-
mental stress cracking), such an addition often has a big
impact on polymer processability, mechanical strength,
adhesion, toxicity and edibility. Evidently, it is of practical
importance to be able to estimate readily the saturation
limits of a particular solvent to a given polymer, at a
given set of external conditions. This is in the focus of the
present paper for the case where the liquid substrate, which
may be a small-molecule solvent or a heteropolymer is
slightly soluble and, therefore, present in small amounts.
Of assistance to this task is the, by now mature, thermo-
dynamic theory of polymers at phase equilibrium.

In this work, and for the special case of polymer/additive
or polymer/polymer pairs, which are barely compatible,
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analytical estimates are provided for (1) the level of addi-
tive/contaminant that saturates a given polymer at a given
temperature and (2) the phase distribution in such a system.
Its closed form results circumvent the usual complexities
and loss of physical clarity associated with solving the
problem numerically. Subsequently, these results are imple-
mented in estimating the interfacial properties and diffusiv-
ity of such a mixture. The treatment is based on the Flory—
Huggins (FH) theory of polymer solutions [1], later
extended to polymer/polymer blends by Scott and Tompa
[2,3] and critically reviewed by Cowie [4].

Despite being over half a century old, FH theory is still a
benchmark, and along with improvements, extensions and
appropriate adaptations is in everyday use. It inspired
several engineering models (e.g. Prausnitz-UNIFAC, Entro-
pic-FV, GC-Flory, etc.), comprehensively reviewed by
Tassios et al. [5], which predict polymer phase behavior
of industrially relevant systems at various levels of success.
It constitutes the basis of a recent study on pressure effects
by Kumar [6]. It is the tool of analyzing multicomponent
phase behavior [7-9] and small-angle neutron scattering
results through which Higgins [10], Bates [11], Han [12],
and more recently and prolifically, Graessley et al. [13,14]
measured the thermodynamic interaction parameter, y, and
established qualitative trends and microstructural correla-
tions pertaining to phase behavior and polymer miscibility.

Of course, there has also been remarkable evolution; as it
becomes apparent in a recent review by Economou [15],
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phase equilibria calculations are increasingly based on an
equation of state (EoS) approach, such as the Flory [16],
Flory—Orwoll—Vrij [17,18], Patterson [19] or even the van
der Waals [20] EoS, or on lattice fluid theories, such as the
Born—Green—Yvon [21], Sanchez—Lacombe [15,18,22] or
Panayotou—Vera [23]. These methods provide the advan-
tage of explicitly accounting for energetic interactions
among dissimilar molecules and for accommodating
compressibility effects. On the other hand, Fredrickson
and Bates conformational asymmetry theory [24] stresses
the effect of non-local properties and molecular packing
on miscibility, thus de-emphasizing energetic interactions.
Freed and Dudowicz compressible lattice cluster theory
[25,26] accommodates the presence of short chain branch-
ing and elucidates the relative contribution of both enthalpic
and entropic effects. Presently, the theoretical study of poly-
mer blend phase behavior is in the realm of lattice [27,28],
off-lattice and hybrid [29] Monte Carlo simulations as well
as molecular dynamics simulations [30].

2. Phase distribution

Let S and P be the components of a partially miscible
binary mixture, of which one (say, P) may be a polymer
and the other (S) a solvent or a smaller polymer. Let w; be
the overall mass fraction of component i in this phase-
separated mixture (ws + wp = 1), p,, its density and M,, its
molecular weight. Let f; be volume fraction of the phase
with the highest i-component concentration; again, fg +
fr = 1. Within each of the two phases, a given precursor
contributes with a volume fraction equal to v;, where the
index ij signifies the i-component in the phase with most j
(i.e. the portion of f; that is i) and, therefore, v v =1

The interrelationship between these various quantities
that define the mixture quality may be established by a
simple mass balance, which equates the two alternative
ways of expressing the (externally controlled) component
mass fraction ratio:

W U ) .
wi pi(fivy T fivi)

The volume fraction of each phase may then be calculated
after some elementary algebra:

. r+ (1 - r)vﬁ
A+ =+ vy)

ij

f=1-1
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where r = w;p;/w;p;.

From this analysis, which is also valid in the absence of
equilibrium, one sees that for a quantitative estimate of
phase distribution in a mixture, the respective phase compo-
sitions should first be known.

3. Miscibility and individual phase composition at
equilibrium

Microscopically, miscibility is aided by the entropy
increase caused by mixing and, as a rule, is hindered by
changes in enthalpy due to the unfavorable thermodynamic
interactions which accompany intimate coexistence among
dissimilar species [1]. A way of quantifying that latter factor
is in terms of ), the thermodynamic interaction parameter
whose dimensionless value is a positive measure of the
incompatibility among the two constituents. For the case
of non-polar components, and with no specific interactions
present, y; is a function of the individual solubilities, &;:

Xi = Xijs + (VIRT)(S; — 8)> =~ A, + By/T 3)

Here, T is the temperature (in K), V; (=M//p;), the molecular
volume of the i-component and R (=8.3 J/mol/K), the gas
constant. y ;s compensates for the lack of non-combinatorial
entropy contributions in the FH treatment (=0.34 in a poly-
mer/solvent system), and A;; and B;; material parameters that
depend on the nature of both i and j.

The Hildebrand solubility parameter, J, is equal to the
square root of the cohesive energy density, i.e. the enthalpy
of vaporization per unit volume. Another thermodynamic
definition for & [31] and its relationship to the surface
tension, vy;, for small molecule liquids [32] is given below:

8 = T(OPIIT), — P = 8y(Np,/V))'? 4)

where P is the pressure, p;, the density of pure component i
and N,,, the Avogadro number (6 X 10% molecules/gmol).
Typically, 8% ~ 400 MPa; for a solvent, Vs ~ 10* cc/gmol,
while for a polymer, Vp is 2—4 orders of magnitude higher;
v: for a high polymer is ~30 mJ/m? while for the corre-
sponding oligomer can be 2—3 times smaller [33]. It has
been experimentally established that for scores of poly-
mer/solvent systems examined, as a rule, —1 < )y; <2
[34]; this demonstrates the limitations of Eq. (3), which
does not accommodate negative y values. On the other
hand, y values higher than two (pertinent in the case
examined here) are possible based on & difference
calculations [31].

An alternative representation of the interaction among
dissimilar species is in terms of ,\/f»j (in gmol/cc), which is
molecular size independent, and is defined as

X i’j = x;'Vi 5

Provided that the interaction intensity among species is
independent of concentration, Xﬁ-j ~ X},-. This, however,
does not always hold with polymer/poor solvent mixtures
[34,35] or with polymer/polymer blends [36].

Estimating v; may be accomplished by considering that at
equilibrium, the chemical potential, w, of a given compo-
nent across the coexisting phases should stay the same:

Mij = M (6)
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The index ij signifies the i-component in the j-rich phase. It
is reminded here that chemical potential is the incremental
change in the free energy of mixing in a particular phase due
to an infinitesimal i-component increase in this very phase.
According to the FH theory, and for any ij index combina-
tion (i.e. SS, SP, PS, PP), the chemical potential may be
compactly expressed as follows:

i = RTn(;) + (1 = vi)(1 = VilVie) + (1 — v)*Vix;]
(7)

where index k may either be P or S, provided that it is not i.
By equating the chemical potential of the i-component
across the two phases w; = u;, one finds, for any
ij-combination

T—wy vy

Vii 1—v;

exp{ - (1 - V[j - le)l:l - % + VlXij(l - Vij + Vj,):l}
J
®)

It is often the case that a pair of components constitutes a
barely compatibile mixture. This may be either due to
thermodynamic dissimilarity manifested by a high |8; — |
difference or large V; values. In a usual y (or T) versus v
phase diagram, this translates into a convex (or concave)
binodal coexistence curve that runs quite close to the v; = 0
and v; = 1 vertical axes. Consequently, v; and v; are small
and, therefore, f; = 1 — Jj — 1/(1 + r), irrespective on how
balanced the initial w;s are. Then, it may be easily shown
that, by neglecting v; and v;; on the right-hand side of Eq. (8),
this simplifies to

vl(1L —vy) = gy =exp{ —1— Vi(X;j — /vyl )

Similarly, by equating the chemical potential of the j-
component across the interface, or by simply rotating the
indices i and j in Egs. (8) and (9):

vil(1 = vy) = &; = exp{ = 1 = V,(xji = L/V))} (10)
By solving Egs. (9) and (10) simultaneously, one finds that,
for any ij-index combination (i # j),
SU(l - 8ji)

1—- 8,'1‘81‘1'

(1)

v =1—v; =

By inspecting Eq. (11) or by considering the physics on
which it is based, one realizes that v;; = g;;. Its applicability
presumes a mixture well into the phase-separated region. In
terms of interaction parameter values, this translates to not
merely

2
1 1 1
Xij > Xij CRITICAL = E(W + W) (12)
i J

but to a stronger repulsion among species; e.g. for V; = V;

and v; < 5%:
Xﬁ‘j =2V, + 1V, > /\/;j CRITICAL (13)

This last constraint, in conjunction with the v; expression
(Eq. (11)), suggests that, for xj; = xji,

Vij (V/ ) / Vi
— = ——1\Vix;i — 1 — —
v CXP( v, Xij Vj

= exp(ﬁ - 1) = (14)
Vi
For a polymer/solvent system (i/j = S/P), Eq. (14) correctly
predicts that, eventually, the polymer leached in the solvent
is negligible when compared to the solvent penetrating the
polymer: vsp >> vps [37]. And that, similarly, in a partially
miscible polymer/polymer blend at equilibrium, where i/j =
P1/P2 and Mp, > Mp,, there is more P1 presence in the P2-
rich phase than the reverse, although this disparity in
composition evens out as the molecular sizes approach
each other.

For the approximate solution to the phase equilibrium
problem presented here, one is most interested in establish-
ing the limits of validity, given an error tolerance of

A = v;(FH)/v;(Apx) — 1 (15)

The ratio of the exact (FH) over the approximate (Apx)
solution is obtained by dividing Eqgs. (8) and (9):

exp{ (v,-j + vji)

Vi /
{5l
- (Vij - Vji)} (16)

It is a matter of simple algebra to show that, e.g. for
A=10% and a polymer/solvent system (= i/j), where
both Vi/V; and v;/v; — 0, acceptable solutions should
conform with

v; = 1In(1 + A)/(2 + x;) = 1/(20 + 10x;) a7

vi(FH)
v;;(Apx)

while for a polymer/polymer blend of roughly equal size
components, where both the V/V; and v;/v; tend to unity:

vij = In(1 + A)/2x;) = 1/(20x;) (18)

In that respect, Eq. (11) is the antipode, and complimentary
of Flory’s approximate solution to the phase equilibrium
problem promulgated in Appendix XIII-A of Ref. [1], and
valid only in the neighborhood of the critical point.

4. Interfacial tension and thickness

These properties which indicate the quality of adhesion
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among heteropolymer surfaces control their fracture energy,
slippage factor, speed of phase separation and phase
morphology [33, 38]. Consequently, they are of importance
in producing polymer/polymer blends of desirable mechan-
ical, rheological, optical and barrier properties [39]. The
interfacial thickness, aj, and (the inverse of) the interfacial
tension, 7y;, are measures of heteropolymer bonding. For
their approximate evaluation, the mean field model of
Helfand and Sapse [40] may be adopted for of a blend of
very long, asymmetric polymers, and for the case where the
P1 rich phase is not entirely devoid of the P2 component.
This theory, like a competing model by Roe [41], sometimes
fails to reproduce the correct temperature dependence of
vi#T); nevertheless, it is known to provide acceptable
order of magnitude predictions:

B} + BB; + B;
--~—RT\/7( 545 ) (19)

and
. 2 2 12
~ [2(B} + B})lxj] (20)

where xj; = x;/V;,

v 12 il — &) 12

B = B4 ff) b.z<—j i ) b. QD
Y ( 6mj J 6mj(1 - 8,16']1) J

and R is the gas constant (= 8.3 J/mol/K). p;, M;, and V; are

the density, molecular weight and molar volume of the j-

polymer, while b;, and m; are correspondingly the length and

molecular weight of the statistical segment of that same

polymer; these quantities are related to the end-to-end
distance of the macromolecule as follows [1]:

(R}) = (Mjlm)b; (22)

Knowing the a; value and the composition in the bulk of
each phase, one may also obtain an idea on how the con-
centration profile evolves across the interface (i.e. at —ay/
2 = z= ay/2 where v; = v{(2) = vj) [42]:

vi(z) = 0.5(vj; + vj;) + 0.5(vj; — vj)tanh(2z/ay) (23)

Consider a mildly incompatible polymer blend like,
e.g. polystyrene/polymethyl-methacrylate (PS/PMMA)
with each component having a molecular weight of

~ 10,000 g/mol, i.e. being in the range where vj; is
close to but not equal to zero [43]. For both polymers,
p=1.1 g/cc, b~65A and m=100 g/mol; )(ij =~
300 mol/m® at 120°C [44]; then, v; = v; = 0.95 and that
B;=B;=27X10" Sm~"2 It is therefore predicted that in
this part1ally phase-separated mixture, a; = 30 A and
vi=15 mJ/m* (=dyn/cm), estimates which are matching
quite close the experimental evidence [45].

It is therefore seen that a simple knowledge of the
thermodynamic interaction between two constituents is, in
principle, sufficient for predicting phase compositions and
bonding quality. Conversely, if the thermodynamic interaction

parameter is not known, yet, v; measurements are possible
by sampling the individual phases, interfacial property esti-
mation may be accomplished by eliminating Xﬁ-j from both
Egs. (19) and (20), and replacing it by

i i 1 M;
X%E&ziln_ _1+pf_ (24)
Vi M; Vij piM;

y

Here also, there are several theoretical improvements in
which the results of Section 3 may readily be incorporated.
Most notably, Anastasiadis et al. [46] accounted for finite
polymer molecular weight and reproduced the correct
temperature dependence. Similar improvements were also
made by Helfand et al. [47], and Tang and Freed [48].
Finally, Broseta et al. [49] and Ermoshkin and Semenov
[50], examined the asymmetric case, of a binary mixture
of heteropolymers with unequal length.

5. Diffusivity

Estimates may also be made for Dsp, the mutual diffusion
coefficient in a partially miscible system, where P may be a
high polymer (taken as the fixed frame of reference) and S a
smaller molecular size penetrant. In applications ranging
from the food and pharmaceutical industry to physiology
[51], this property, in conjunction with Fick’s second law
of diffusion and the appropriate boundary conditions, is used
in modeling adsorption or desorption of liquid moieties
from polymers and elastomers [52]. For a polymer of
plate or sheet geometry, for example, this may be accom-
plished by solving Eq. (25) for the Jsp flux of the penetrant
or its evolving concentration, vgp(f,x), as a function of time,
t, and plate thickness, x:

aVSp _ 1 GJSP _ i) ( DSP aVsp)

a 1- Vsp 0x

25
ot ps 0x 25)

Diffusivity depends on the ever present self-diffusion due
to thermally induced molecular mobility, D, but also on
the ‘distance’ from the point of saturation [53]:

Dgp Dy dusp

= 26
1 —vgp RT 9 In(vgp) (26)

Via Eq. (7), this translates to
Dgp

V. V.
o = Dself(vi + (1 —vgp)(1 — VIS) - ZX/SPVSVSP))
27

The thermodynamic self-diffusion coefficient is an
increasing function of fgp, the fractional free volume avail-
able, which is assumed equal to be the weighted average of
the individual f; [54]:

—B —B
Dsei = D ~— =D — 28
it 0 exp( fsp ) 0 exp( vepls + vpplp ) 28)

In this model, which was later perfected, albeit at a
considerable loss of simplicity [55,56], Dy and B are
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constants that depend on the size and shape of the penetrant
and B is a measure of the free volume required for an incre-
mental S move. f; = fj; + a(T — T}) and, as a rule, fg > fp.
The subscript g signifies a property at the glass transition
and «; is the free volume thermal expansion coefficient.
Within the context of this work, and with the help of Eq.
(11), the self-diffusion coefficient at equilibrium may be
expressed as follows:

—B(1 — &speps) ) 29)

(1 — epg)espfs + (1 — esp)fp

Eq. (23) may then be rewritten as follows:
Dsp [ 1—&gp Vs ([ 1-ew
Dy 1 — &speps Ve 1 — &speps

X (1 - % v ST Ees) )} (30)
P

Dyr = Dy exp(

I — espeps

In the case that the molecular size of the migrating penetrant
is insignificant in comparison with that of the polymer
host, (ppMs)/(psMp) = Vs/Vp — 0 and &gp > gpg — O,
Eq. (30) simplifies somewhat. It may then be expressed in
terms of polymer composition:

Dsp =~ Do(1 — vsp)*{1 + 2vgp[1

—B
31
vepfs + (1 — Vsp)fp) (3D

which is a form of importance when attempting to solve
Eq. (25) numerically. Alternatively, and since
vsp = exp — (1 + xsp), Eq. (31) may be used for an
approximate Dsgp estimate at a given temperature,
provided the thermodynamic interaction parameter and
the individual f; are known; evidently, such an estimate
is destined to be in the lower limit of the Dgp variation
since it presumes vgp close to saturation.

+ In(vgp)] }eXP(

6. Conclusions

The results presented here may be of assistance in a series
of practical situations, like optimizing additive incorpora-
tion, predicting plastics degradation in hostile environ-
ments, improving adhesive strength, assessing substance
migration from packaging to foodstuff (or the reverse) or
possible contamination levels during post-use polymer
recycling, etc. They refer to binary mixtures but they may
also serve as a guide for multicomponent ones. This is
because in our case of marginal miscibility, the limited
extent of individual additive participation should not
severely affect each other’s presence in the mostly P host.
Consequently, it is reasonable to expect that the fraction of
S;, one of several poor solvents (i =1,2,3,...), is propor-
tional to ~exp{—1 — Vs(x'sip — 1/Vp)}.

The reliability of these estimates is, of course, subject to
the limitations of the physical model from which they were

derived (Sections 1 and 3, and p. 166 in Ref. [7]) and the
accuracy of the physico-chemical data introduced in this
model. Even when these prerequisites are fulfilled, they
provide an upper limit for the penetrant concentration
within the polymer (or of the polymer within the surround-
ing solvent) since they presume equilibrium conditions
which may not always be feasible due to component
mingling at inadequate proportions, imperfect mechanical
mixing or, in the case passive presence of a polymer in
a solvent laden environment, mutual exposure of short
duration.
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